Assessment of Various APM Technologies
For Airsides 2 and 4 Replacement Project

September 30, 2016
Purpose

• Identify List of All Available Transit Technologies.
• Review the Advantages and Disadvantages for the Various Technologies.
• Identify the Most Appropriate Candidate Technology for Airsides 2 and 4 (A2-B4) Replacement.
OIA General Layout (Airsides and Guideways Designations)
Evaluation Criteria

The following criteria were used:

• Ability for Technology to Match Existing Structural Infrastructure
 • Minimizes Passenger Impacts
 • Reduces Impacts to Airport Operations
 • Manage Known Costs and Minimize Hidden Costs

• Evaluation of Vehicle Capacities Based on Existing Operational Demands.
Evaluated Technologies

Personal Rapid Transit (PRT)
- Requires Station Modifications
- Cannot Meet Line Capacity Demands

Monorails
- Requires specific guidance structure, not compatible with existing guideway and emergency egress requirements
- Requires major reconstruction

Automated Light Rail Transit System (ALRT)
- Typically longer systems
- Difficult to match existing infrastructure requirements.
- Requires major reconstruction
Evaluated Technologies

Cable-Propelled APMs
- Presently upgrading & operating MIA system
- High interest from Vendors for Procurement

Self-Propelled Rubber Tired APMs
- Current System
- Replacement Technology for Airsides 1&3 (A1-B3)
- High interest from Vendors for Procurement
Site Specific Assessment

Evaluation based on technical database of technology and application in recent projects; A1–B3 replacement, and similar projects in Miami International Airport. The following Technologies are considered and evaluated in detail:

Self Propelled (SP) Technology:
- Technology A: Innovia by Bombardier (modern version of existing CX-100)
- Technology B: Crystal Mover by MHI (being adopted for A1-B3)
- Other Similar Technologies: Siemens, IHI and Woojin

Cable Propelled (CP) Technology:
- Technology C: Mini Metro by Leitner Poma (being implemented at MIA)
- Doppelmayr is a similar cable propelled system
System Capacity

- A2-B4 Systems are **Must Ride** Systems
- Single Shuttle Capability (especially during construction).
- The B4 System has 40% reduced capacity during International Mode.
- Cable Propelled Capacity 72% of that of Self Propelled, based on MIA application.
- Dual Lane Shuttles adequate for all Technologies.
- Single Lane Shuttle: Self-Propelled adequate most times
- Cable-Propelled multiple occurrences where passengers are remaining on platform for extended time periods.
Passenger Demand A2
- Dual Lanes: Adequate All Technologies.
- Self Propelled: Single Lane, capacity issues 4 times/day.
- Cable Propelled: Single Lane, capacity issues numerous times/day.

Passenger Demand B4
- Dual Lanes: Adequate All Technologies, except in IM mode, Cable Propelled issues 6 times/day.
- Self Propelled: Single Lane, capacity issues during IM Mode.
- Cable Propelled: Single Lane, significant capacity issues during IM Mode (significant rolling effect of passengers left on platform.)
System Capacity Summary

<table>
<thead>
<tr>
<th>Capacity</th>
<th>Self Propelled</th>
<th>Cable Propelled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Car Capacity</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Normal Operations /Dual Lane</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Adequacy of Single Lane</td>
<td>Neutral</td>
<td>Neutral</td>
</tr>
<tr>
<td>Vehicle Size</td>
<td>Neutral</td>
<td>Neutral</td>
</tr>
</tbody>
</table>
Vehicle Compatibility

Existing A1-B3 Vehicle Schematic

Existing A2-B4 Vehicle Schematic
Vehicle Compatibility

Technology A (SP)
- Innovia by Bombardier
- Contemporary Version of Existing System
- Car doors match 16' alignment of existing
- Car nose is slightly longer and will require modifications to meet all Platform Station Doors
- Centerline of wheels match exactly to the running pad
- Vehicle height is exact match
- Vehicle width is exact match
Vehicle Compatibility

Technology B (SP)

- Crystal Mover by MHI (center guidance)
- Adopted for Airside A1 and B3
- Car doors match 16’ alignment of existing
- Car nose is slightly longer and will require modifications to meet all Platform Station Doors
- Centerline of wheels are ± 2.5” from running pad
- Vehicle height is taller (though no issues with A1-B3)
- Vehicle width is slightly narrower
Vehicle Compatibility

Technology C (CP)
- Mini Metro by Leitner Poma
- Being implemented in MIA Concourse E
- Car doors match 16’ alignment of existing
- Coupled cars are shorter and will require coupling extension to meet all Platform Station Doors
- Centerline of wheels are ± 8” from running pad
- Vehicle height is slightly taller
- Vehicle width is slightly narrower
Guideway Interface Self Propelled

Guideway
• Exact or near match to guideway running pad
• No structural issues
• No enhancements required to running surface
• Tech A “Good” Rating
• Tech B “Neutral” Rating since not an exact match

Emergency Walkway
• Vehicle door height meets the existing emergency walkway height of 3’ – 7”
• No modifications required.
• Tech. A & B receive “Good” Ratings

INNOVIA APM 100
Proposed for A1/B3

MHI Proposed for A1/B3
Guideway Interface Cable Propelled

Leitner Poma MIA - Satellite E

Guideway
- ± 8” Variance to Guideway Running Pad, possible structural modifications required to compensate.
- Guideway modifications required to accommodate cable system.
- Tech C ranges from “Neutral” to “Less Compatible”.

Emergency Walkway
- Vehicle door height does NOT meet the existing emergency walkway height. Exact height differential depends on guideway modifications.
- Due to Passenger Demographics; technology is “Less Compatible”.

CENTER LINE OF WHEEL 8 (+/-) INCHES OFF FROM GUIDEWAY RUNNING PAD CENTER LINE
Guideway Interface Cable Propelled

Aesthetics

• Cable Propelled system requires 2 Deviation Bull Wheels along the Guideway

• Requires dedicated additional space for Gear Room for these wheels

• Tech. C has a significant impact.

Deviation Bull Wheels at MIA Concourse E
Guideway Interface Summary

<table>
<thead>
<tr>
<th>Guideway Structure Needs / Compatibility</th>
<th>Self Propelled</th>
<th>Cable Propelled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheel Base</td>
<td>Good</td>
<td>Neutral</td>
</tr>
<tr>
<td>General Structural Compatibility</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Aesthetics</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Walkway Elevation</td>
<td>Good</td>
<td>Good</td>
</tr>
</tbody>
</table>

- **Wheel Base**: Good (Tech. A), Neutral (Tech. B), Neutral (Other S.P. Tech.), Less Compatible (Tech. C)
- **General Structural Compatibility**: Good (Tech. A), Good (Tech. B), Good (Other S.P. Tech.), Neutral (Tech. C)
- **Aesthetics**: Good (Tech. A), Good (Tech. B), Good (Other S.P. Tech.), Intrusive (Tech. C)
- **Walkway Elevation**: Good (Tech. A), Good (Tech. B), Good (Other S.P. Tech.), Less Compatible (not acceptable) (Tech. C)
Station Layout and Interface

Technologies A & B (SP)
- Similar to existing system, fits into existing infrastructure
- No additional equipment required.
- Minor modifications required to car nose to match existing Station Doors

Technology C (CP)
- Similar to existing system, fits into existing infrastructure
- Additional equipment required at Station (Return and Tension Wheel)
- Impacts FIS under B4
- Minor modifications required to vehicle coupling to match existing Station Doors
Station Layout and Interface

Technology C (CP)
• Return Bull Wheel Impacts

Airside 4 Level 1 (under Station)
Station Layout and Interface

Airside 2 Level 1

Technology C (CP) Return Bull Wheel Airside 2
Station Layout and Interface

<table>
<thead>
<tr>
<th></th>
<th>Self Propelled</th>
<th></th>
<th>Cable Propelled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landside Station:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Configuration</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Additional Equipment Required</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Station Doors</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Airside Station:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Configuration</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Additional Equipment Required</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Station Doors</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
</tr>
</tbody>
</table>
Impact of New Installation

- Additional equipment
- Additional space

Impact of Phased Commissioning

- Sequencing of Construction
- Additional O&M Personnel
- Overlap with Existing O&M Personnel
Maintenance Facility O&M Contract

Timeline:

• Design Life gap for B4 after A2 (possibly 6-7 years)

• 2 possible Contractors/Systems simultaneously operating in confined space
Flexibility of Airport’s Future Growth and Expansion

Ground Level Improvements:
- Space Constraints
- Impact on Operations
- Limiting Growth

<table>
<thead>
<tr>
<th>Maintenance Space</th>
<th>Self Propelled</th>
<th>Cable Propelled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact of New Installation</td>
<td>Minimal</td>
<td>Minimal</td>
</tr>
<tr>
<td>Impact of Phased Commissioning</td>
<td>Neutral</td>
<td>Significant</td>
</tr>
<tr>
<td>O&M Contract & System Replacement Timeline</td>
<td>Minimal</td>
<td>Neutral</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flexibility for Growth of Airport Operations</th>
<th>Self Propelled</th>
<th>Cable Propelled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground Level Improvement</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Suitability for Expansion of B4 IM (capacity)</td>
<td>Neutral</td>
<td>Neutral</td>
</tr>
<tr>
<td></td>
<td>Self Propelled</td>
<td>Cable Propelled</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Capacity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Car Capacity</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Normal Ops.</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Adequacy of Single Lane</td>
<td>Neutral</td>
<td>Neutral</td>
</tr>
<tr>
<td>Vehicle Size</td>
<td>Neutral</td>
<td>Neutral</td>
</tr>
</tbody>
</table>

Guideway Structure Needs / Compatibility				
Wheel Base	Good	Neutral	Neutral	Less Compatible
Gen. Str. Compatibility	Good	Good	Good	Neutral
Aesthetics	Good	Good	Good	Intrusive
Walkway Elevation	Good	Good	Good	Less Compatible (not acceptable)

Landside Station				
General Config.	Good	Good	Good	Good
Added Equip.	Good	Good	Good	Good
Station Doors	Good	Good	Good	Good
Airside Station				
General Config.	Good	Good	Good	Good
Added Equip.	Good	Good	Good	Significant (not acceptable)
Station Doors	Good	Good	Good	Good

Maintenance Space				
Impact of New Installation	Good	Good	Good	Significant
Impact of Phased Commissioning	Neutral	Less Compatible	Less Compatible	Less Compatible
O&M Contract & System Repl. Timeline	Good	Neutral	Neutral	Neutral

Flexibility for Growth of Airport Ops.				
Gr. Level Improvement	Good	Good	Good	Significant
Suitability for Expansion of B4 IM (capacity)	Neutral	Neutral	Neutral	Reduced

| **Total (rated)** | Acceptable | Acceptable | Acceptable | **Includes Two Not Acceptable** |

Discussion